Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 395: 130394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301940

RESUMO

Molecularly imprinted magnetic biochar (MBC@MIPs) was synthesized through molecular imprinting precipitation polymerization. This material demonstrated a selective adsorption capacity of oxytetracycline (OTC) from water samples. Upon characterization of MBC@MIPs, results revealed the formation of a memory cavity shell layer on the magnetic biochar's surface, exhibiting a distinctive recognition effect alongside commendable magnetic and thermal stability. Analysis of the adsorption kinetics indicated that the OTC adsorption process aligned well with the pseudo-second-order rate equation, with chemisorption acting as the predominant mechanism for antibiotic adsorption onto MBC@MIPs. The data could be well described by the Langmuir isotherm model. At 299 K, MBC@MIPs showed a maximum binding capacity of 67.89 mg·g-1, surpassing that of MBC (38.84 mg·g-1) by 1.77 times. MBC@MIPs exhibited the highest selectivity towards OTC, with an imprinting factor (IF) of 5.64. Even amidst interference from antibiotics, MBC@MIPs maintained a significant adsorption capacity for OTC (6.10 mg·g-1), with IF of 6.70.


Assuntos
Carvão Vegetal , Impressão Molecular , Oxitetraciclina , Polímeros/química , Antibacterianos , Adsorção , Fenômenos Magnéticos
2.
Pharm Biol ; 60(1): 1781-1789, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36102594

RESUMO

CONTEXT: Polyphyllin II (PPII) is a steroidal saponin isolated from Rhizoma Paridis. It exhibits significant antitumor activity such as anti-proliferation and pro-apoptosis in lung cancer. OBJECTIVE: To explore whether PPII induce autophagy and the relationship between autophagy and apoptosis in non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS: The effects of PPII (0, 1, 5, and 10 µM) were elucidated by CCK8 assay, colony formation test, TUNEL staining, MDC method, and mRFP-GFP-LC3 lentivirus transfection in A549 and H1299 cells for 24 h. DMSO-treated cells were selected as control. The protein expression of autophagy (LC3-II, p62), apoptosis (Bcl-2, Bax, caspase-3) and p-mTOR was detected by Western blotting. We explored the relationship between autophagy and apoptosis by autophagy inhibitor CQ (10 µM) and 3-MA (5 mM). RESULTS: PPII (0, 1, 5, and 10 µM) inhibited the proliferation and induced apoptosis. The IC50 values of A549 and H1299 cells were 8.26 ± 0.03 and 2.86 ± 0.83 µM. We found that PPII could induce autophagy. PPII promoted the formation of autophagosome, increased the expression of LC3-II/LC3-I (p < 0.05), while decreased p62 and p-mTOR (p < 0.05). Additionally, the co-treatment with autophagy inhibitors promoted the protein expression of c-caspase-3 and rate of Bax/Bcl-2 (p < 0.05), compared with PPII-only treatment group. Therefore, our results indicated that PPII-induced autophagy may be a mechanism to promote cell survival, although it can also induce apoptosis. CONCLUSIONS: PPII-induced apoptosis exerts its anticancer activity by inhibiting autophagy, which will hopefully provide a prospective compound for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Saponinas , Apoptose , Autofagia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Saponinas/farmacologia , Transdução de Sinais , Esteroides , Serina-Treonina Quinases TOR/metabolismo , Proteína X Associada a bcl-2
3.
Cell Death Dis ; 13(8): 750, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042213

RESUMO

For patients with platinum-resistant lung adenocarcinoma (LUAD), the exploration of new effective drug candidates is urgently needed. Fibroblast growth factor receptors (FGFRs) have been identified as promising targets for LUAD therapy. The purpose of this study was to determine the exact role of the irreversible FGFR1-4 inhibitor FIIN-2 in LUAD and to clarify its underlying molecular mechanisms. Our results demonstrated that FIIN-2 significantly inhibited the proliferation, colony formation, and migration of A549 and A549/DDP cells but induced the mitochondria-mediated apoptosis of these cells. Meanwhile, FIIN-2 increased the autophagy flux of A549 and A549/DDP cells by inhibiting the mammalian target of rapamycin (mTOR) and further activating the class III PI3K complex pathway. More importantly, in vivo and in vitro experiments showed that autophagy inhibitors could enhance the cytotoxicity of FIIN-2 on A549 and A549/DDP cells, confirming that FIIN-2 induced protective autophagy. These findings indicated that FIIN-2 is a potential drug candidate for LUAD treatment, and its use in combination with autophagy inhibitors might be an efficient treatment strategy, especially for patients with cisplatin resistance.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Neoplasias Pulmonares , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos
4.
Front Pharmacol ; 13: 890974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592418

RESUMO

Cisplatin (DDP)-based chemotherapy remains one of the standard treatment options for patients with advanced lung adenocarcinoma (LUAD), and cisplatin resistance is the biggest challenge to this therapy. Autophagy is also closely associated with chemoresistance in LUAD. Desperately need to find a way to improve the treatment efficiency of cisplatin-resistant LUAD in clinical practice. Previous studies reported that methylseleninic acid (MSA) has good anti-proliferation and pro-apoptotic activities in tumor cells. However, the effectiveness of MSA on cisplatin-resistant LUAD and its effect on the induction of autophagy is still unclear. In the current study, we found that MSA effectively inhibited the proliferation of LUAD cell lines and triggered mitochondrial pathway-mediated apoptosis. This effect was more pronounced in cisplatin-resistant LUAD cells with high MDR1 expression. In contrast, the mitochondrial damage caused by MSA treatment can be degraded by inducing selective autophagy in LUAD cells, thereby exerting a self-protective effect on tumor cells. Mechanistically, MSA inhibits proliferation, promotes apoptosis, and induces autophagy in LUAD cells by inhibiting of the Akt/mTOR pathway. Combination with autophagy inhibitors reduces the effect of this selective autophagy-induced resistance, and thus enhancing even more the anti-tumor effect of MSA on cisplatin-resistant LUAD cells. Finally, We speculate that MSA in combination with autophagy inhibitors may be a promising new therapeutic strategy for the treatment of cisplatin-resistant LUAD.

5.
FEBS Open Bio ; 7(6): 798-810, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28593135

RESUMO

Effective drug combinations have the potential to strengthen therapeutic efficacy and combat drug resistance. Both melatonin and valproic acid (VPA) exhibit antitumor activities in various cancer cells. The aim of this study was to evaluate the cell death pathways initiated by anticancer combinatorial effects of melatonin and VPA in bladder cancer cells. The results demonstrated that the combination of melatonin and VPA leads to significant synergistic growth inhibition of UC3 bladder cancer cells. Gene expression studies revealed that cotreatment with melatonin and VPA triggered the up-regulation of certain genes related to apoptosis (TNFRSF10A and TNFRSF10B), autophagy (BECN, ATG3 and ATG5) and necrosis (MLKL, PARP-1 and RIPK1). The combinatorial treatment increased the expression of endoplasmic reticulum (ER)-stress-related genes ATF6, IRE1, EDEM1 and ERdj4. Cotreatment with melatonin and VPA enhanced the expression of E-cadherin, and decreased the expression of N-cadherin, Fibronectin, Snail and Slug. Furthermore, the Wnt pathway and Raf/MEK/ERK pathway were activated by combinatorial treatment. However, the effects on the expression of certain genes were not further enhanced in cells following combinatorial treatment in comparison to individual treatment of melatonin or VPA. In summary, these findings provided evidence that cotreatment with melatonin and VPA exerted increased cytotoxicity by regulating cell death pathways in UC3 bladder cancer cells, but the clinical significance of combinatorial treatment still needs to be further exploited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...